Papers
Topics
Authors
Recent
2000 character limit reached

Designing Experiments for Data-Driven Control of Nonlinear Systems (2103.16509v1)

Published 30 Mar 2021 in eess.SY and cs.SY

Abstract: In a paper we have shown that data collected from linear systems excited by persistently exciting inputs during low-complexity experiments, can be used to design state- and output-feedback controllers, including optimal Linear Quadratic Regulators (LQR), by solving linear matrix inequalities (LMI) and semidefinite programs. We have also shown how to stabilize in the first approximation unknown nonlinear systems using data. In contrast to the case of linear systems, however, in the case of nonlinear systems the conditions for learning a controller directly from data may not be fulfilled even when the data are collected in experiments performed using persistently exciting inputs. In this paper we show how to design experiments that lead to the fulfilment of these conditions.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.