Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adversarially learned iterative reconstruction for imaging inverse problems

Published 30 Mar 2021 in eess.IV, cs.CV, and cs.LG | (2103.16151v1)

Abstract: In numerous practical applications, especially in medical image reconstruction, it is often infeasible to obtain a large ensemble of ground-truth/measurement pairs for supervised learning. Therefore, it is imperative to develop unsupervised learning protocols that are competitive with supervised approaches in performance. Motivated by the maximum-likelihood principle, we propose an unsupervised learning framework for solving ill-posed inverse problems. Instead of seeking pixel-wise proximity between the reconstructed and the ground-truth images, the proposed approach learns an iterative reconstruction network whose output matches the ground-truth in distribution. Considering tomographic reconstruction as an application, we demonstrate that the proposed unsupervised approach not only performs on par with its supervised variant in terms of objective quality measures but also successfully circumvents the issue of over-smoothing that supervised approaches tend to suffer from. The improvement in reconstruction quality comes at the expense of higher training complexity, but, once trained, the reconstruction time remains the same as its supervised counterpart.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.