Papers
Topics
Authors
Recent
2000 character limit reached

Compositional Abstraction Error and a Category of Causal Models (2103.15758v2)

Published 29 Mar 2021 in stat.ML, cs.AI, cs.LG, cs.LO, and math.CT

Abstract: Interventional causal models describe several joint distributions over some variables used to describe a system, one for each intervention setting. They provide a formal recipe for how to move between the different joint distributions and make predictions about the variables upon intervening on the system. Yet, it is difficult to formalise how we may change the underlying variables used to describe the system, say moving from fine-grained to coarse-grained variables. Here, we argue that compositionality is a desideratum for such model transformations and the associated errors: When abstracting a reference model M iteratively, first obtaining M' and then further simplifying that to obtain M'', we expect the composite transformation from M to M'' to exist and its error to be bounded by the errors incurred by each individual transformation step. Category theory, the study of mathematical objects via compositional transformations between them, offers a natural language to develop our framework for model transformations and abstractions. We introduce a category of finite interventional causal models and, leveraging theory of enriched categories, prove the desired compositionality properties for our framework.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.