Papers
Topics
Authors
Recent
2000 character limit reached

Entropy methods for the confidence assessment of probabilistic classification models (2103.15157v1)

Published 28 Mar 2021 in stat.ML, cs.LG, and stat.ME

Abstract: Many classification models produce a probability distribution as the outcome of a prediction. This information is generally compressed down to the single class with the highest associated probability. In this paper, we argue that part of the information that is discarded in this process can be in fact used to further evaluate the goodness of models, and in particular the confidence with which each prediction is made. As an application of the ideas presented in this paper, we provide a theoretical explanation of a confidence degradation phenomenon observed in the complement approach to the (Bernoulli) Naive Bayes generative model.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.