Entropy methods for the confidence assessment of probabilistic classification models (2103.15157v1)
Abstract: Many classification models produce a probability distribution as the outcome of a prediction. This information is generally compressed down to the single class with the highest associated probability. In this paper, we argue that part of the information that is discarded in this process can be in fact used to further evaluate the goodness of models, and in particular the confidence with which each prediction is made. As an application of the ideas presented in this paper, we provide a theoretical explanation of a confidence degradation phenomenon observed in the complement approach to the (Bernoulli) Naive Bayes generative model.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.