Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Techniques for In-Crop Weed Identification: A Review (2103.14872v2)

Published 27 Mar 2021 in cs.CV

Abstract: Weeds are a significant threat to the agricultural productivity and the environment. The increasing demand for sustainable agriculture has driven innovations in accurate weed control technologies aimed at reducing the reliance on herbicides. With the great success of deep learning in various vision tasks, many promising image-based weed detection algorithms have been developed. This paper reviews recent developments of deep learning techniques in the field of image-based weed detection. The review begins with an introduction to the fundamentals of deep learning related to weed detection. Next, recent progresses on deep weed detection are reviewed with the discussion of the research materials including public weed datasets. Finally, the challenges of developing practically deployable weed detection methods are summarized, together with the discussions of the opportunities for future research.We hope that this review will provide a timely survey of the field and attract more researchers to address this inter-disciplinary research problem.

Citations (18)

Summary

We haven't generated a summary for this paper yet.