Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble-in-One: Learning Ensemble within Random Gated Networks for Enhanced Adversarial Robustness (2103.14795v1)

Published 27 Mar 2021 in cs.LG, cs.CR, and cs.CV

Abstract: Adversarial attacks have rendered high security risks on modern deep learning systems. Adversarial training can significantly enhance the robustness of neural network models by suppressing the non-robust features. However, the models often suffer from significant accuracy loss on clean data. Ensemble training methods have emerged as promising solutions for defending against adversarial attacks by diversifying the vulnerabilities among the sub-models, simultaneously maintaining comparable accuracy as standard training. However, existing ensemble methods are with poor scalability, owing to the rapid complexity increase when including more sub-models in the ensemble. Moreover, in real-world applications, it is difficult to deploy an ensemble with multiple sub-models, owing to the tight hardware resource budget and latency requirement. In this work, we propose ensemble-in-one (EIO), a simple but efficient way to train an ensemble within one random gated network (RGN). EIO augments the original model by replacing the parameterized layers with multi-path random gated blocks (RGBs) to construct a RGN. By diversifying the vulnerability of the numerous paths within the RGN, better robustness can be achieved. It provides high scalability because the paths within an EIO network exponentially increase with the network depth. Our experiments demonstrate that EIO consistently outperforms previous ensemble training methods with even less computational overhead.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.