Papers
Topics
Authors
Recent
2000 character limit reached

On a link criterion for Lipschitz normal embeddings among definable sets (2103.14387v2)

Published 26 Mar 2021 in math.GT and math.AG

Abstract: It is known by a result of Mendes and Sampaio that the Lipschitz normal embedding of a subanalytic germ is fully characterized by the Lipschitz normal embedding of its link. In this note, we show that the result still holds for definable germs in any o-minimal structure on $(\mathbb{R}, + , .)$. We also give an example showing that for homomorphisms between MD-homologies induced by the identity map, being isomorphic is not enough to ensure that the given germ is Lipschitz normally embedded. This is a negative answer to the question asked by Bobadilla et al. in their paper about Moderately Discontinuous Homology.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.