Papers
Topics
Authors
Recent
2000 character limit reached

On Imitation Learning of Linear Control Policies: Enforcing Stability and Robustness Constraints via LMI Conditions

Published 24 Mar 2021 in math.OC, cs.LG, cs.SY, and eess.SY | (2103.12945v1)

Abstract: When applying imitation learning techniques to fit a policy from expert demonstrations, one can take advantage of prior stability/robustness assumptions on the expert's policy and incorporate such control-theoretic prior knowledge explicitly into the learning process. In this paper, we formulate the imitation learning of linear policies as a constrained optimization problem, and present efficient methods which can be used to enforce stability and robustness constraints during the learning processes. Specifically, we show that one can guarantee the closed-loop stability and robustness by posing linear matrix inequality (LMI) constraints on the fitted policy. Then both the projected gradient descent method and the alternating direction method of multipliers (ADMM) method can be applied to solve the resulting constrained policy fitting problem. Finally, we provide numerical results to demonstrate the effectiveness of our methods in producing linear polices with various stability and robustness guarantees.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.