Optimization Methods for Fully Composite Problems (2103.12632v1)
Abstract: In this paper, we propose a new Fully Composite Formulation of convex optimization problems. It includes, as a particular case, the problems with functional constraints, max-type minimization problems, and problems of Composite Minimization, where the objective can have simple nondifferentiable components. We treat all these formulations in a unified way, highlighting the existence of very natural optimization schemes of different order. We prove the global convergence rates for our methods under the most general conditions. Assuming that the upper-level component of our objective function is subhomogeneous, we develop efficient modification of the basic Fully Composite first-order and second-order Methods, and propose their accelerated variants.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.