Papers
Topics
Authors
Recent
2000 character limit reached

Global Correlation Network: End-to-End Joint Multi-Object Detection and Tracking (2103.12511v2)

Published 23 Mar 2021 in cs.CV

Abstract: Multi-object tracking (MOT) has made great progress in recent years, but there are still some problems. Most MOT algorithms follow tracking-by-detection framework, which separates detection and tracking into two independent parts. Early tracking-by-detection algorithms need to do two feature extractions for detection and tracking. Recently, some algorithms make the feature extraction into one network, but the tracking part still relies on data association and needs complex post-processing for life cycle management. Those methods do not combine detection and tracking well. In this paper, we present a novel network to realize joint multi-object detection and tracking in an end-to-end way, called Global Correlation Network (GCNet). Different from most object detection methods, GCNet introduces the global correlation layer for regression of absolute size and coordinates of bounding boxes instead of offsets prediction. The pipeline of detection and tracking by GCNet is conceptually simple, which does not need non-maximum suppression, data association, and other complicated tracking strategies. GCNet was evaluated on a multi-vehicle tracking dataset, UA-DETRAC, and demonstrates promising performance compared to the state-of-the-art detectors and trackers.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.