Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Optimal lower bounds for first eigenvalues of Riemann surfaces for large genus (2103.12302v1)

Published 23 Mar 2021 in math.DG, math.GT, and math.SP

Abstract: In this article we study the first eigenvalues of closed Riemann surfaces for large genus. We show that for every closed Riemann surface $X_g$ of genus $g$ $(g\geq 2)$, the first eigenvalue of $X_g$ is greater than $\frac{\mathcal{L}_1(X_g)}{g2}$ up to a uniform positive constant multiplication. Where $\mathcal{L}_1(X_g)$ is the shortest length of multi closed curves separating $X_g$. Moreover,we also show that this new lower bound is optimal as $g \to \infty$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.