Papers
Topics
Authors
Recent
2000 character limit reached

Generation and Simulation of Yeast Microscopy Imagery with Deep Learning (2103.11834v4)

Published 22 Mar 2021 in eess.IV and cs.CV

Abstract: Time-lapse fluorescence microscopy (TLFM) is an important and powerful tool in synthetic biological research. Modeling TLFM experiments based on real data may enable researchers to repeat certain experiments with minor effort. This thesis is a study towards deep learning-based modeling of TLFM experiments on the image level. The modeling of TLFM experiments, by way of the example of trapped yeast cells, is split into two tasks. The first task is to generate synthetic image data based on real image data. To approach this problem, a novel generative adversarial network, for conditionalized and unconditionalized image generation, is proposed. The second task is the simulation of brightfield microscopy images over multiple discrete time-steps. To tackle this simulation task an advanced future frame prediction model is introduced. The proposed models are trained and tested on a novel dataset that is presented in this thesis. The obtained results showed that the modeling of TLFM experiments, with deep learning, is a proper approach, but requires future research to effectively model real-world experiments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.