2000 character limit reached
Uniformization of compact foliated spaces by surfaces of hyperbolic type
Published 19 Mar 2021 in math.DG | (2103.10880v3)
Abstract: We give a new proof of the uniformization theorem of the leaves of a lamination by surfaces of hyperbolic conformal type. We use a laminated version of the Ricci flow to prove the existence of a laminated Riemannian metric (smooth on the leaves, transversaly continuous) with leaves of constant Gaussian curvature equal to -1, which is conformally equivalent to the original metric.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.