Papers
Topics
Authors
Recent
2000 character limit reached

Tri-Partitions and Bases of an Ordered Complex (2103.10830v1)

Published 19 Mar 2021 in math.CO and cs.CG

Abstract: Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholz-Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, $K$, and every dimension, $p$, there is a partition of the set of $p$-cells into a maximal $p$-tree, a maximal $p$-cotree, and a collection of $p$-cells whose cardinality is the $p$-th Betti number of $K$. Given an ordering of the $p$-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.