Papers
Topics
Authors
Recent
2000 character limit reached

Lower Bounds on the Size of General Branch-and-Bound Trees (2103.09807v2)

Published 17 Mar 2021 in math.OC, cs.CC, and cs.DS

Abstract: A \emph{general branch-and-bound tree} is a branch-and-bound tree which is allowed to use general disjunctions of the form $\pi{\top} x \leq \pi_0 \,\vee\, \pi{\top}x \geq \pi_0 + 1$, where $\pi$ is an integer vector and $\pi_0$ is an integer scalar, to create child nodes. We construct a packing instance, a set covering instance, and a Traveling Salesman Problem instance, such that any general branch-and-bound tree that solves these instances must be of exponential size. We also verify that an exponential lower bound on the size of general branch-and-bound trees persists when we add Gaussian noise to the coefficients of the cross polytope, thus showing that polynomial-size "smoothed analysis" upper bound is not possible. The results in this paper can be viewed as the branch-and-bound analog of the seminal paper by Chv\'atal et al. \cite{chvatal1989cutting}, who proved lower bounds for the Chv\'atal-Gomory rank.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.