Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bijecting hidden symmetries for skew staircase shapes (2103.09551v3)

Published 17 Mar 2021 in math.CO

Abstract: We present a bijection between the set of standard Young tableaux of staircase minus rectangle shape, and the set of marked shifted standard Young tableaux of a certain shifted shape. Numerically, this result is due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the product formula for the number of standard Young tableaux of staircase minus rectangle shape. This resolves an open problem by Morales, Pak and Panova (2019), and allows for efficient random sampling. Other applications include a bijection for semistandard Young tableaux, and a bijective proof of Stembridge's symmetry of LR-coefficients of the staircase shape. We also extend these results to set-valued standard Young tableaux in the combinatorics of K-theory, leading to new proofs of results by Lewis and Marberg (2019) and Abney-McPeek, An and Ng (2020).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.