Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting the Loss Weight Adjustment in Object Detection

Published 17 Mar 2021 in cs.CV and cs.AI | (2103.09488v4)

Abstract: Object detection is a typical multi-task learning application, which optimizes classification and regression simultaneously. However, classification loss always dominates the multi-task loss in anchor-based methods, hampering the consistent and balanced optimization of the tasks. In this paper, we find that shifting the bounding boxes can change the division of positive and negative samples in classification, meaning classification depends on regression. Moreover, we summarize three important conclusions about fine-tuning loss weights, considering different datasets, optimizers and regression loss functions. Based on the above conclusions, we propose Adaptive Loss Weight Adjustment(ALWA) to solve the imbalance in optimizing anchor-based methods according to statistical characteristics of losses. By incorporating ALWA into previous state-of-the-art detectors, we achieve a significant performance gain on PASCAL VOC and MS COCO, even with L1, SmoothL1 and CIoU loss. The code is available at https://github.com/ywx-hub/ALWA.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.