Papers
Topics
Authors
Recent
2000 character limit reached

Towards Fair Affective Robotics: Continual Learning for Mitigating Bias in Facial Expression and Action Unit Recognition

Published 15 Mar 2021 in cs.CV, cs.LG, and cs.RO | (2103.09233v1)

Abstract: As affective robots become integral in human life, these agents must be able to fairly evaluate human affective expressions without discriminating against specific demographic groups. Identifying bias in Machine Learning (ML) systems as a critical problem, different approaches have been proposed to mitigate such biases in the models both at data and algorithmic levels. In this work, we propose Continual Learning (CL) as an effective strategy to enhance fairness in Facial Expression Recognition (FER) systems, guarding against biases arising from imbalances in data distributions. We compare different state-of-the-art bias mitigation approaches with CL-based strategies for fairness on expression recognition and Action Unit (AU) detection tasks using popular benchmarks for each; RAF-DB and BP4D. Our experiments show that CL-based methods, on average, outperform popular bias mitigation techniques, strengthening the need for further investigation into CL for the development of fairer FER algorithms.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.