Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamically Emerging Topological Phase Transitions in Nonlinear Interacting Soliton Lattices

Published 15 Mar 2021 in nlin.PS, cond-mat.other, and physics.optics | (2103.08378v1)

Abstract: We demonstrate dynamical topological phase transitions in evolving Su-Schrieffer-Heeger (SSH) lattices made of interacting soliton arrays, which are entirely driven by nonlinearity and thereby exemplify emergent nonlinear topological phenomena. The phase transitions occur from topologically trivial-to-nontrivial phase in periodic succession with crossovers from topologically nontrivial-to-trivial regime. The signature of phase transition is gap-closing and re-opening point, where two extended states are pulled from the bands into the gap to become localized topological edge states. Crossovers occur via decoupling of the edge states from the bulk of the lattice.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.