Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Transfer Learning for Infectious Disease Case Detection Using Electronic Medical Records (2103.06710v1)

Published 8 Mar 2021 in cs.LG

Abstract: During an infectious disease pandemic, it is critical to share electronic medical records or models (learned from these records) across regions. Applying one region's data/model to another region often have distribution shift issues that violate the assumptions of traditional machine learning techniques. Transfer learning can be a solution. To explore the potential of deep transfer learning algorithms, we applied two data-based algorithms (domain adversarial neural networks and maximum classifier discrepancy) and model-based transfer learning algorithms to infectious disease detection tasks. We further studied well-defined synthetic scenarios where the data distribution differences between two regions are known. Our experiments show that, in the context of infectious disease classification, transfer learning may be useful when (1) the source and target are similar and the target training data is insufficient and (2) the target training data does not have labels. Model-based transfer learning works well in the first situation, in which case the performance closely matched that of the data-based transfer learning models. Still, further investigation of the domain shift in real world research data to account for the drop in performance is needed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ye Ye (10 papers)
  2. Andrew Gu (7 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.