Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distant Domain Transfer Learning for Medical Imaging (2012.06346v1)

Published 10 Dec 2020 in eess.IV and cs.LG

Abstract: Medical image processing is one of the most important topics in the field of the Internet of Medical Things (IoMT). Recently, deep learning methods have carried out state-of-the-art performances on medical image tasks. However, conventional deep learning have two main drawbacks: 1) insufficient training data and 2) the domain mismatch between the training data and the testing data. In this paper, we propose a distant domain transfer learning (DDTL) method for medical image classification. Moreover, we apply our methods to a recent issue (Coronavirus diagnose). Several current studies indicate that lung Computed Tomography (CT) images can be used for a fast and accurate COVID-19 diagnosis. However, the well-labeled training data cannot be easily accessed due to the novelty of the disease and a number of privacy policies. Moreover, the proposed method has two components: Reduced-size Unet Segmentation model and Distant Feature Fusion (DFF) classification model. It is related to a not well-investigated but important transfer learning problem, termed Distant Domain Transfer Learning (DDTL). DDTL aims to make efficient transfers even when the domains or the tasks are entirely different. In this study, we develop a DDTL model for COVID-19 diagnose using unlabeled Office-31, Catech-256, and chest X-ray image data sets as the source data, and a small set of COVID-19 lung CT as the target data. The main contributions of this study: 1) the proposed method benefits from unlabeled data collected from distant domains which can be easily accessed, 2) it can effectively handle the distribution shift between the training data and the testing data, 3) it has achieved 96\% classification accuracy, which is 13\% higher classification accuracy than "non-transfer" algorithms, and 8\% higher than existing transfer and distant transfer algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shuteng Niu (14 papers)
  2. Meryl Liu (1 paper)
  3. Yongxin Liu (19 papers)
  4. Jian Wang (967 papers)
  5. Houbing Song (42 papers)
Citations (63)

Summary

We haven't generated a summary for this paper yet.