Recent Advances on Neural Network Pruning at Initialization (2103.06460v3)
Abstract: Neural network pruning typically removes connections or neurons from a pretrained converged model; while a new pruning paradigm, pruning at initialization (PaI), attempts to prune a randomly initialized network. This paper offers the first survey concentrated on this emerging pruning fashion. We first introduce a generic formulation of neural network pruning, followed by the major classic pruning topics. Then, as the main body of this paper, a thorough and structured literature review of PaI methods is presented, consisting of two major tracks (sparse training and sparse selection). Finally, we summarize the surge of PaI compared to PaT and discuss the open problems. Apart from the dedicated literature review, this paper also offers a code base for easy sanity-checking and benchmarking of different PaI methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.