Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Learning for Zero Shot Neural Machine Translation (2103.05951v1)

Published 10 Mar 2021 in cs.CL

Abstract: Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource rich conditions. However, evaluations using real-world low-resource languages still result in unsatisfactory performance. This work proposes a novel zero-shot NMT modeling approach that learns without the now-standard assumption of a pivot language sharing parallel data with the zero-shot source and target languages. Our approach is based on three stages: initialization from any pre-trained NMT model observing at least the target language, augmentation of source sides leveraging target monolingual data, and learning to optimize the initial model to the zero-shot pair, where the latter two constitute a self-learning cycle. Empirical findings involving four diverse (in terms of a language family, script and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consistent improvements are observed even in a domain-mismatch setting, attesting to the usability of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Surafel M. Lakew (12 papers)
  2. Matteo Negri (93 papers)
  3. Marco Turchi (51 papers)
Citations (1)