Improving Sequential Recommendation with Attribute-augmented Graph Neural Networks
Abstract: Many practical recommender systems provide item recommendation for different users only via mining user-item interactions but totally ignoring the rich attribute information of items that users interact with. In this paper, we propose an attribute-augmented graph neural network model named Murzim. Murzim takes as input the graphs constructed from the user-item interaction sequences and corresponding item attribute sequences. By combining the GNNs with node aggregation and an attention network, Murzim can capture user preference patterns, generate embeddings for user-item interaction sequences, and then generate recommendations through next-item prediction. We conduct extensive experiments on multiple datasets. Experimental results show that Murzim outperforms several state-of-the-art methods in terms of recall and MRR, which illustrates that Murzim can make use of item attribute information to produce better recommendations. At present, Murzim has been deployed in MX Player, one of India's largest streaming platforms, and is recommending videos for tens of thousands of users.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.