Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Functional strong law of large numbers for Betti numbers in the tail (2103.05799v2)

Published 10 Mar 2021 in math.PR

Abstract: The objective of this paper is to investigate the layered structure of topological complexity in the tail of a probability distribution. We establish the functional strong law of large numbers for Betti numbers, a basic quantifier of algebraic topology, of a geometric complex outside an open ball of radius $R_n$, such that $R_n\to\infty$ as the sample size $n$ increases. The nature of the obtained law of large numbers is determined by the decay rate of a probability density. It especially depends on whether the tail of a density decays at a regularly varying rate or an exponentially decaying rate. The nature of the limit theorem depends also on how rapidly $R_n$ diverges. In particular, if $R_n$ diverges sufficiently slowly, the limiting function in the law of large numbers is crucially affected by the emergence of arbitrarily large connected components supporting topological cycles in the limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.