Portfolio Construction as Linearly Constrained Separable Optimization (2103.05455v2)
Abstract: Mean-variance portfolio optimization problems often involve separable nonconvex terms, including penalties on capital gains, integer share constraints, and minimum position and trade sizes. We propose a heuristic algorithm for such problems based on the alternating direction method of multipliers (ADMM). This method allows for solve times in tens to hundreds of milliseconds with around 1000 securities and 100 risk factors. We also obtain a bound on the achievable performance. Our heuristic and bound are both derived from similar results for other optimization problems with a separable objective and affine equality constraints. We discuss a concrete implementation in the case where the separable terms in the objective are piecewise quadratic, and we empirically demonstrate its effectiveness for tax-aware portfolio construction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.