Papers
Topics
Authors
Recent
2000 character limit reached

Components of symmetric wide-matrix varieties (2103.05415v2)

Published 9 Mar 2021 in math.AC, math.AG, and math.CO

Abstract: We show that if X_n is a variety of cxn-matrices that is stable under the group Sym([n]) of column permutations and if forgetting the last column maps X_n into X_{n-1}, then the number of Sym([n])-orbits on irreducible components of X_n is a quasipolynomial in n for all sufficiently large n. To this end, we introduce the category of affine FIop-schemes of width one, review existing literature on such schemes, and establish several new structural results about them. In particular, we show that under a shift and a localisation, any width-one FIop-scheme becomes of product form, where X_n=Yn for some scheme Y in affine c-space. Furthermore, to any FIop-scheme of width one we associate a component functor from the category FI of finite sets with injections to the category PF of finite sets with partially defined maps. We present a combinatorial model for these functors and use this model to prove that Sym([n])-orbits of components of X_n, for all n, correspond bijectively to orbits of a groupoid acting on the integral points in certain rational polyhedral cones. Using the orbit-counting lemma for groupoids and theorems on quasipolynomiality of lattice point counts, this yields our Main Theorem.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.