Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Adaptive Egocentric Person Re-identification (2103.04870v1)

Published 8 Mar 2021 in cs.CV

Abstract: Person re-identification (re-ID) in first-person (egocentric) vision is a fairly new and unexplored problem. With the increase of wearable video recording devices, egocentric data becomes readily available, and person re-identification has the potential to benefit greatly from this. However, there is a significant lack of large scale structured egocentric datasets for person re-identification, due to the poor video quality and lack of individuals in most of the recorded content. Although a lot of research has been done in person re-identification based on fixed surveillance cameras, these do not directly benefit egocentric re-ID. Machine learning models trained on the publicly available large scale re-ID datasets cannot be applied to egocentric re-ID due to the dataset bias problem. The proposed algorithm makes use of neural style transfer (NST) that incorporates a variant of Convolutional Neural Network (CNN) to utilize the benefits of both fixed camera vision and first-person vision. NST generates images having features from both egocentric datasets and fixed camera datasets, that are fed through a VGG-16 network trained on a fixed-camera dataset for feature extraction. These extracted features are then used to re-identify individuals. The fixed camera dataset Market-1501 and the first-person dataset EGO Re-ID are applied for this work and the results are on par with the present re-identification models in the egocentric domain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ankit Choudhary (1 paper)
  2. Deepak Mishra (78 papers)
  3. Arnab Karmakar (5 papers)
Citations (2)