Papers
Topics
Authors
Recent
Search
2000 character limit reached

Strong valid inequalities for a class of concave submodular minimization problems under cardinality constraints

Published 7 Mar 2021 in math.OC | (2103.04398v4)

Abstract: We study the polyhedral convex hull structure of a mixed-integer set which arises in a class of cardinality-constrained concave submodular minimization problems. This class of problems has an objective function in the form of $f(a\top x)$, where $f$ is a univariate concave function, $a$ is a non-negative vector, and $x$ is a binary vector of appropriate dimension. Such minimization problems frequently appear in applications that involve risk-aversion or economies of scale. We propose three classes of strong valid linear inequalities for this convex hull and specify their facet conditions when $a$ has two distinct values. We show how to use these inequalities to obtain valid inequalities for general $a$ that contains multiple values. We further provide a complete linear convex hull description for this mixed-integer set when $a$ contains two distinct values and the cardinality constraint upper bound is two. Our computational experiments on the mean-risk optimization problem demonstrate the effectiveness of the proposed inequalities in a branch-and-cut framework.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.