Papers
Topics
Authors
Recent
Search
2000 character limit reached

HTMD-Net: A Hybrid Masking-Denoising Approach to Time-Domain Monaural Singing Voice Separation

Published 7 Mar 2021 in eess.AS and cs.SD | (2103.04336v1)

Abstract: The advent of deep learning has led to the prevalence of deep neural network architectures for monaural music source separation, with end-to-end approaches that operate directly on the waveform level increasingly receiving research attention. Among these approaches, transformation of the input mixture to a learned latent space, and multiplicative application of a soft mask to the latent mixture, achieves the best performance, but is prone to the introduction of artifacts to the source estimate. To alleviate this problem, in this paper we propose a hybrid time-domain approach, termed the HTMD-Net, combining a lightweight masking component and a denoising module, based on skip connections, in order to refine the source estimated by the masking procedure. Evaluation of our approach in the task of monaural singing voice separation in the musdb18 dataset indicates that our proposed method achieves competitive performance compared to methods based purely on masking when trained under the same conditions, especially regarding the behavior during silent segments, while achieving higher computational efficiency.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.