Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural networks can understand compositional functions that humans do not, in the context of emergent communication (2103.04180v2)

Published 6 Mar 2021 in cs.CL

Abstract: We show that it is possible to craft transformations that, applied to compositional grammars, result in grammars that neural networks can learn easily, but humans do not. This could explain the disconnect between current metrics of compositionality, that are arguably human-centric, and the ability of neural networks to generalize to unseen examples. We propose to use the transformations as a benchmark, ICY, which could be used to measure aspects of the compositional inductive bias of networks, and to search for networks with similar compositional inductive biases to humans. As an example of this approach, we propose a hierarchical model, HU-RNN, which shows an inductive bias towards position-independent, word-like groups of tokens.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.