Papers
Topics
Authors
Recent
2000 character limit reached

A Convolutional Architecture for 3D Model Embedding (2103.03764v1)

Published 5 Mar 2021 in cs.CV and cs.AI

Abstract: During the last years, many advances have been made in tasks like3D model retrieval, 3D model classification, and 3D model segmentation.The typical 3D representations such as point clouds, voxels, and poly-gon meshes are mostly suitable for rendering purposes, while their use forcognitive processes (retrieval, classification, segmentation) is limited dueto their high redundancy and complexity. We propose a deep learningarchitecture to handle 3D models as an input. We combine this architec-ture with other standard architectures like Convolutional Neural Networksand autoencoders for computing 3D model embeddings. Our goal is torepresent a 3D model as a vector with enough information to substitutethe 3D model for high-level tasks. Since this vector is a learned repre-sentation which tries to capture the relevant information of a 3D model,we show that the embedding representation conveys semantic informationthat helps to deal with the similarity assessment of 3D objects. Our ex-periments show the benefit of computing the embeddings of a 3D modeldata set and use them for effective 3D Model Retrieval.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.