Papers
Topics
Authors
Recent
2000 character limit reached

Phase transitions of composition schemes: Mittag-Leffler and mixed Poisson distributions

Published 5 Mar 2021 in math.PR and math.CO | (2103.03751v3)

Abstract: Multitudinous probabilistic and combinatorial objects are associated with generating functions satisfying a composition scheme $F(z)=G(H(z))$. The analysis becomes challenging when this scheme is critical (i.e., $G$ and $H$ are simultaneously singular). Motivated by many examples (random mappings, planar maps, directed lattice paths), we consider a natural extension of this scheme, namely $F(z,u)=G(u H(z))M(z)$. We also consider a variant of this scheme, which allows us to analyse the number of $H$-components of a given size in $F$. We prove that these two models lead to a rich world of limit laws, where we identify the key role played by a new universal law introduced in this article: the three-parameter Mittag-Leffler distribution, which is essentially the product of a beta and a Mittag-Leffler distribution. We also prove (double) phase transitions, additionally involving Boltzmann and mixed Poisson distributions, bringing a unified explanation of the associated thresholds. In all cases we obtain moment convergence and local limit theorems. We end with extensions of the critical composition scheme to a cycle scheme and to the multivariate case, leading to product distributions. Applications are presented for random walks, trees (supertrees of trees, increasingly labelled trees, preferential attachment trees), triangular P\'olya urns, and the Chinese restaurant process.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.