Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Causal Attention for Vision-Language Tasks (2103.03493v1)

Published 5 Mar 2021 in cs.CV

Abstract: We present a novel attention mechanism: Causal Attention (CATT), to remove the ever-elusive confounding effect in existing attention-based vision-LLMs. This effect causes harmful bias that misleads the attention module to focus on the spurious correlations in training data, damaging the model generalization. As the confounder is unobserved in general, we use the front-door adjustment to realize the causal intervention, which does not require any knowledge on the confounder. Specifically, CATT is implemented as a combination of 1) In-Sample Attention (IS-ATT) and 2) Cross-Sample Attention (CS-ATT), where the latter forcibly brings other samples into every IS-ATT, mimicking the causal intervention. CATT abides by the Q-K-V convention and hence can replace any attention module such as top-down attention and self-attention in Transformers. CATT improves various popular attention-based vision-LLMs by considerable margins. In particular, we show that CATT has great potential in large-scale pre-training, e.g., it can promote the lighter LXMERT~\cite{tan2019lxmert}, which uses fewer data and less computational power, comparable to the heavier UNITER~\cite{chen2020uniter}. Code is published in \url{https://github.com/yangxuntu/catt}.

Citations (130)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.