Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Multi-Modal Respiratory Disease Exacerbation Prediction Technique Based on a Spatio-Temporal Machine Learning Architecture

Published 3 Mar 2021 in eess.IV and cs.CV | (2103.03086v2)

Abstract: Chronic respiratory diseases, such as chronic obstructive pulmonary disease and asthma, are a serious health crisis, affecting a large number of people globally and inflicting major costs on the economy. Current methods for assessing the progression of respiratory symptoms are either subjective and inaccurate, or complex and cumbersome, and do not incorporate environmental factors. Lacking predictive assessments and early intervention, unexpected exacerbations can lead to hospitalizations and high medical costs. This work presents a multi-modal solution for predicting the exacerbation risks of respiratory diseases, such as COPD, based on a novel spatio-temporal machine learning architecture for real-time and accurate respiratory events detection, and tracking of local environmental and meteorological data and trends. The proposed new machine learning architecture blends key attributes of both convolutional and recurrent neural networks, allowing extraction of both spatial and temporal features encoded in respiratory sounds, thereby leading to accurate classification and tracking of symptoms. Combined with the data from environmental and meteorological sensors, and a predictive model based on retrospective medical studies, this solution can assess and provide early warnings of respiratory disease exacerbations. This research will improve the quality of patients' lives through early medical intervention, thereby reducing hospitalization rates and medical costs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.