Papers
Topics
Authors
Recent
2000 character limit reached

Emergent statistical mechanics from properties of disordered random matrix product states (2103.02634v4)

Published 3 Mar 2021 in quant-ph

Abstract: The study of generic properties of quantum states has led to an abundance of insightful results. A meaningful set of states that can be efficiently prepared in experiments are ground states of gapped local Hamiltonians, which are well approximated by matrix product states. In this work, we introduce a picture of generic states within the trivial phase of matter with respect to their non-equilibrium and entropic properties: We do so by rigorously exploring non-translation-invariant matrix product states drawn from a local i.i.d. Haar-measure. We arrive at these results by exploiting techniques for computing moments of random unitary matrices and by exploiting a mapping to partition functions of classical statistical models, a method that has lead to valuable insights on local random quantum circuits. Specifically, we prove that such disordered random matrix product states equilibrate exponentially well with overwhelming probability under the time evolution of Hamiltonians featuring a non-degenerate spectrum. Moreover, we prove two results about the entanglement Renyi entropy: The entropy with respect to sufficiently disconnected subsystems is generically extensive in the system-size, and for small connected systems the entropy is almost maximal for sufficiently large bond dimensions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 12 tweets with 0 likes about this paper.