Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cross-View Regularization for Domain Adaptive Panoptic Segmentation

Published 3 Mar 2021 in cs.CV | (2103.02584v1)

Abstract: Panoptic segmentation unifies semantic segmentation and instance segmentation which has been attracting increasing attention in recent years. However, most existing research was conducted under a supervised learning setup whereas unsupervised domain adaptive panoptic segmentation which is critical in different tasks and applications is largely neglected. We design a domain adaptive panoptic segmentation network that exploits inter-style consistency and inter-task regularization for optimal domain adaptive panoptic segmentation. The inter-style consistency leverages geometric invariance across the same image of the different styles which fabricates certain self-supervisions to guide the network to learn domain-invariant features. The inter-task regularization exploits the complementary nature of instance segmentation and semantic segmentation and uses it as a constraint for better feature alignment across domains. Extensive experiments over multiple domain adaptive panoptic segmentation tasks (e.g., synthetic-to-real and real-to-real) show that our proposed network achieves superior segmentation performance as compared with the state-of-the-art.

Citations (57)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.