Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooking Object's State Identification Without Using Pretrained Model (2103.02305v1)

Published 3 Mar 2021 in cs.CV

Abstract: Recently, Robotic Cooking has been a very promising field. To execute a recipe, a robot has to recognize different objects and their states. Contrary to object recognition, state identification has not been explored that much. But it is very important because different recipe might require different state of an object. Moreover, robotic grasping depends on the state. Pretrained model usually perform very well in this type of tests. Our challenge was to handle this problem without using any pretrained model. In this paper, we have proposed a CNN and trained it from scratch. The model is trained and tested on the dataset from cooking state recognition challenge. We have also evaluated the performance of our network from various perspective. Our model achieves 65.8% accuracy on the unseen test dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.