Papers
Topics
Authors
Recent
Search
2000 character limit reached

Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$ Geometry

Published 2 Mar 2021 in cs.LG, cs.CR, math.OC, and stat.ML | (2103.01516v1)

Abstract: Stochastic convex optimization over an $\ell_1$-bounded domain is ubiquitous in machine learning applications such as LASSO but remains poorly understood when learning with differential privacy. We show that, up to logarithmic factors the optimal excess population loss of any $(\varepsilon,\delta)$-differentially private optimizer is $\sqrt{\log(d)/n} + \sqrt{d}/\varepsilon n.$ The upper bound is based on a new algorithm that combines the iterative localization approach of~\citet{FeldmanKoTa20} with a new analysis of private regularized mirror descent. It applies to $\ell_p$ bounded domains for $p\in [1,2]$ and queries at most $n{3/2}$ gradients improving over the best previously known algorithm for the $\ell_2$ case which needs $n2$ gradients. Further, we show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $\sqrt{\log(d)/n} + (\log(d)/\varepsilon n){2/3}.$ This bound is achieved by a new variance-reduced version of the Frank-Wolfe algorithm that requires just a single pass over the data. We also show that the lower bound in this case is the minimum of the two rates mentioned above.

Citations (87)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.