Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

A general approach to sample path generation of infinitely divisible processes via shot noise representation (2103.01414v1)

Published 2 Mar 2021 in math.PR, cs.NA, and math.NA

Abstract: We establish a sample path generation scheme in a unified manner for general multivariate infinitely divisible processes based on shot noise representation of their integrators. The approximation is derived from the decomposition of the infinitely divisible process to three independent components based on jump sizes and timings: the large jumps over a compact time interval, small jumps over the entire time interval and large jumps over an unbounded time interval. The first component is taken as the approximation and is much simpler than simulation of general Gaussian processes, while the latter two components are analyzed as the error. We derive technical conditions for the two error terms to vanish in the limit and for the scaled component on small jumps to converge to a Gaussian process so as to enhance the accuracy of the weak approximation. We provide an extensive collection of examples to highlight the wide practicality of the proposed approach.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)