Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CHAMP: Characterizing Undesired App Behaviors from User Comments based on Market Policies (2103.00712v1)

Published 1 Mar 2021 in cs.SE

Abstract: Millions of mobile apps have been available through various app markets. Although most app markets have enforced a number of automated or even manual mechanisms to vet each app before it is released to the market, thousands of low-quality apps still exist in different markets, some of which violate the explicitly specified market policies.In order to identify these violations accurately and timely, we resort to user comments, which can form an immediate feedback for app market maintainers, to identify undesired behaviors that violate market policies, including security-related user concerns. Specifically, we present the first large-scale study to detect and characterize the correlations between user comments and market policies. First, we propose CHAMP, an approach that adopts text mining and NLP techniques to extract semantic rules through a semi-automated process, and classifies comments into 26 pre-defined types of undesired behaviors that violate market policies. Our evaluation on real-world user comments shows that it achieves both high precision and recall ($>0.9$) in classifying comments for undesired behaviors. Then, we curate a large-scale comment dataset (over 3 million user comments) from apps in Google Play and 8 popular alternative Android app markets, and apply CHAMP to understand the characteristics of undesired behavior comments in the wild. The results confirm our speculation that user comments can be used to pinpoint suspicious apps that violate policies declared by app markets. The study also reveals that policy violations are widespread in many app markets despite their extensive vetting efforts. CHAMP can be a \textit{whistle blower} that assigns policy-violation scores and identifies most informative comments for apps.

Citations (14)

Summary

We haven't generated a summary for this paper yet.