Papers
Topics
Authors
Recent
2000 character limit reached

Delayed Rewards Calibration via Reward Empirical Sufficiency (2102.10527v3)

Published 21 Feb 2021 in cs.LG

Abstract: Appropriate credit assignment for delay rewards is a fundamental challenge for reinforcement learning. To tackle this problem, we introduce a delay reward calibration paradigm inspired from a classification perspective. We hypothesize that well-represented state vectors share similarities with each other since they contain the same or equivalent essential information. To this end, we define an empirical sufficient distribution, where the state vectors within the distribution will lead agents to environmental reward signals in the consequent steps. Therefore, a purify-trained classifier is designed to obtain the distribution and generate the calibrated rewards. We examine the correctness of sufficient state extraction by tracking the real-time extraction and building different reward functions in environments. The results demonstrate that the classifier could generate timely and accurate calibrated rewards. Moreover, the rewards are able to make the model training process more efficient. Finally, we identify and discuss that the sufficient states extracted by our model resonate with the observations of humans.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.