Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Berry Curvature and Quantum Metric in $N$-band systems -- an Eigenprojector Approach (2102.09899v3)

Published 19 Feb 2021 in cond-mat.other and quant-ph

Abstract: The eigenvalues of a parameter-dependent Hamiltonian matrix form a band structure in parameter space. In such $N$-band systems, the quantum geometric tensor (QGT), consisting of the Berry curvature and quantum metric tensors, is usually computed from numerically obtained energy eigenstates. Here, an alternative approach to the QGT based on eigenprojectors and (generalized) Bloch vectors is exposed. It offers more analytical insight than the eigenstate approach. In particular, the full QGT of each band can be obtained without computing eigenstates, using only the Hamiltonian matrix and the respective band energy. Most saliently, the well-known two-band formula for the Berry curvature in terms of the Hamiltonian vector is generalized to arbitrary $N$. The formalism is illustrated using three- and four-band multifold fermion models that have very different geometrical and topological properties despite an identical band structure. From a broader perspective, the methodology used in this work can be applied to compute any physical quantity or to study the quantum dynamics of any observable without the explicit construction of energy eigenstates.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.