Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Similarity Learning for Language-based Product Image Retrieval

Published 18 Feb 2021 in cs.CV, cs.IR, and cs.MM | (2102.09375v1)

Abstract: This paper aims for the language-based product image retrieval task. The majority of previous works have made significant progress by designing network structure, similarity measurement, and loss function. However, they typically perform vision-text matching at certain granularity regardless of the intrinsic multiple granularities of images. In this paper, we focus on the cross-modal similarity measurement, and propose a novel Hierarchical Similarity Learning (HSL) network. HSL first learns multi-level representations of input data by stacked encoders, and object-granularity similarity and image-granularity similarity are computed at each level. All the similarities are combined as the final hierarchical cross-modal similarity. Experiments on a large-scale product retrieval dataset demonstrate the effectiveness of our proposed method. Code and data are available at https://github.com/liufh1/hsl.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.