Papers
Topics
Authors
Recent
Search
2000 character limit reached

Informational entropy thresholds as a physical mechanism to explain power-law time distributions in sequential decision-making

Published 17 Feb 2021 in physics.soc-ph, cond-mat.dis-nn, and nlin.AO | (2102.08802v2)

Abstract: While frameworks based on physical grounds (like the Drift-Diffusion Model) have been exhaustively used in psychology and neuroscience to describe perceptual decision-making in humans, analogous approaches for more complex situations like sequential (tree-like) decision making are still absent. For such scenarios, which involve a reflective prospection of future options to reach a decision, we offer a plausible mechanism based on the internal computation of the Shannon's entropy for the different options available to the subjects. When a threshold in the entropy is reached this will trigger the decision, which means that the amount of information that has been gathered through sensory evidence is enough to assess the options accurately. Experimental evidence in favour of this mechanism is provided by exploring human performances during navigation through a maze on the computer screen monitored with the help of eye-trackers. In particular, our analysis allows us to prove that: (i) prospection is effectively being used by humans during such navigation tasks, and a quantification of the level of prospection used is attainable, (ii) the distribution of decision times during the task exhibits power-law tails, a feature that our entropy-based mechanism is able to explain, in contrast to classical decision-making frameworks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.