Papers
Topics
Authors
Recent
Search
2000 character limit reached

Making the most of your day: online learning for optimal allocation of time

Published 16 Feb 2021 in stat.ML, cs.LG, math.OC, and stat.OT | (2102.08087v2)

Abstract: We study online learning for optimal allocation when the resource to be allocated is time. %Examples of possible applications include job scheduling for a computing server, a driver filling a day with rides, a landlord renting an estate, etc. An agent receives task proposals sequentially according to a Poisson process and can either accept or reject a proposed task. If she accepts the proposal, she is busy for the duration of the task and obtains a reward that depends on the task duration. If she rejects it, she remains on hold until a new task proposal arrives. We study the regret incurred by the agent, first when she knows her reward function but does not know the distribution of the task duration, and then when she does not know her reward function, either. This natural setting bears similarities with contextual (one-armed) bandits, but with the crucial difference that the normalized reward associated to a context depends on the whole distribution of contexts.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.