Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Transformers in Natural Language Generation: GPT, BERT, and XLNet (2102.08036v1)

Published 16 Feb 2021 in cs.CL and cs.LG

Abstract: Recent years have seen a proliferation of attention mechanisms and the rise of Transformers in Natural Language Generation (NLG). Previously, state-of-the-art NLG architectures such as RNN and LSTM ran into vanishing gradient problems; as sentences grew larger, distance between positions remained linear, and sequential computation hindered parallelization since sentences were processed word by word. Transformers usher in a new era. In this paper, we explore three major Transformer-based models, namely GPT, BERT, and XLNet, that carry significant implications for the field. NLG is a burgeoning area that is now bolstered with rapid developments in attention mechanisms. From poetry generation to summarization, text generation derives benefit as Transformer-based LLMs achieve groundbreaking results.

Citations (76)

Summary

We haven't generated a summary for this paper yet.