Papers
Topics
Authors
Recent
Search
2000 character limit reached

CrossLight: A Cross-Layer Optimized Silicon Photonic Neural Network Accelerator

Published 13 Feb 2021 in cs.LG, cs.AR, cs.ET, and cs.NE | (2102.06960v1)

Abstract: Domain-specific neural network accelerators have seen growing interest in recent years due to their improved energy efficiency and inference performance compared to CPUs and GPUs. In this paper, we propose a novel cross-layer optimized neural network accelerator called CrossLight that leverages silicon photonics. CrossLight includes device-level engineering for resilience to process variations and thermal crosstalk, circuit-level tuning enhancements for inference latency reduction, and architecture-level optimization to enable higher resolution, better energy-efficiency, and improved throughput. On average, CrossLight offers 9.5x lower energy-per-bit and 15.9x higher performance-per-watt at 16-bit resolution than state-of-the-art photonic deep learning accelerators.

Citations (59)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.