Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Codifferentials and Quasidifferentials of the Expectation of Nonsmooth Random Integrands and Two-Stage Stochastic Programming (2102.06677v4)

Published 12 Feb 2021 in math.OC and math.PR

Abstract: This work is devoted to an analysis of exact penalty functions and optimality conditions for nonsmooth two-stage stochastic programming problems. To this end, we first study the co-/quasi-differentiability of the expectation of nonsmooth random integrands and obtain explicit formulae for its co- and quasidifferential under some natural assumptions on the integrand. Then we analyse exact penalty functions for a variational reformulation of two-stage stochastic programming problems and obtain sufficient conditions for the global exactness of these functions with two different penalty terms. In the end of the paper, we combine our results on the co-/quasi-differentiability of the expectation of nonsmooth random integrands and exact penalty functions to derive optimality conditions for nonsmooth two-stage stochastic programming problems in terms of codifferentials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. J.-P. Aubin and H. Frankowska. Set-Valued Analysis. Birkhäuser, Boston, 1990.
  2. G. Barbarosoǧlu and Y. Arda. A two-stage stochastic programming framework for transportation planning in disaster response. J. Oper. Res. Soc., 55:43–53, 2004.
  3. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New York, 2011.
  4. V. I. Bogachev. Measure Theory. Volume I. Springer-Verlag, Berlin, Heidelberg, 2007.
  5. J. V. Burke. The subdifferential of measurable composite max integrands and smoothing approximation. Math. Program., 181:229–264, 2020.
  6. X. Chen and M. Fukushima. Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res., 30:916–638, 2005.
  7. Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim., 22:649–673, 2012.
  8. Bilevel Programming Problems. Theory, Algorithms and Applications to Energy Networks. Springer, Berlin, Heidelberg, 2015.
  9. S. Dempe and A. Zemkoho, editors. Bilevel Optimization. Advances and Next Challenges. Springer, Cham, 2020.
  10. V. F. Demyanov. Conditions for an extremum in metric spaces. J. Glob. Optim., 17:55–63, 2000.
  11. V. F. Demyanov. Nonsmooth optimization. In G. Di Pillo and F. Schoen, editors, Nonlinear optimization. Lecture notes in mathematics, vol. 1989, pages 55–163. Springer-Verlag, Berlin, 2010.
  12. V. F. Demyanov and L. C. W. Dixon, editors. Quasidifferential Calculus. Springer, Berlin, Heidelberg, 1986.
  13. Introduction to Minimax. Dover Publications, New York, 2014.
  14. Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main, 1995.
  15. V. F. Demyanov and A. M. Rubinov, editors. Quasidifferentiability and Related Topics. Kluwer Academic Publishers, Dordrecht, 2000.
  16. M. V. Dolgopolik. Codifferential calculus in normed spaces. J. Math. Sci., 173:441–462, 2011.
  17. M. V. Dolgopolik. Nonsmooth problems of calculus of variations via codifferentiation. ESAIM: Control Optim. Calc. Var., 20:1153–1180, 2014.
  18. M. V. Dolgopolik. Abstract convex approximations of nonsmooth functions. Optim., 64:1439–1469, 2015.
  19. M. V. Dolgopolik. A unifying theory of exactness of linear penalty functions. Optim., 65:1167–1202, 2016.
  20. M. V. Dolgopolik. A convergence analysis of the method of codifferential descent. Comput. Optim. Appl., 71:879–913, 2018.
  21. M. V. Dolgopolik. Constrained nonsmooth problems of the calculus of variations. ESAIM: Control, Optim., Calc. Var., 27:1–35, 2021.
  22. M. V. Dolgopolik and A. Fominyh. Exact penalty functions for optimal control problems I: main theorem and free-endpoint problems. Optim. Control Appl. Meth., 40:1018–1044, 2019.
  23. C. I. Fábián and Z. Szőke. Solving two-stage stochastic programming problems with level decomposition. Comput. Manag. Sci., 4:313–353, 2007.
  24. S. D. Flåm and J. Zowe. Exact penalty functions in single-stage stochastic programming. Optim., 21:723–734, 1990.
  25. E. Grass and K. Fischer. Two-stage stochastic programming in disaster management: a literature survey. Surv. Oper. Res. Manag. Sci., 21:85–100, 2016.
  26. J. B. Hiriart-Urruty. Conditions nécessaires d’optimalité pour un programme stochastique avec recours. SIAM J. Control Optim., 16:317–329, 1978.
  27. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ. Eng. Environ. Syst., 17:95–118, 2000.
  28. H. Leövey and W. Römisch. Quasi-Monte Carlo methods for linear two-stage stochastic programming problems. Math. Program., 151:315–345, 2015.
  29. Quasidifferentiabilities of the expectation functions of random quasidifferentiable functions. Optim., pages 1–16, 2020. DOI: 10.1080/02331934.2020.1818235.
  30. A two-stage stochastic programming model for transportation network protection. Comput. Oper. Res., 36:1582–1590, 2009.
  31. Robust stochastic approximation approach to stochastic programming. SIAM J. Optim., 19:1574–1609, 2009.
  32. Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim., 21:517–544, 2011.
  33. A. V. Orlov. On a solving bilevel D.C.-convex optimization problems. In Y. Kochetov, I. Bukadorov, and T. Gruzdeva, editors, Mathematical Optimization Theory and Operations Research. MOTOR 2020., pages 179–191. Springer, Cham, 2020.
  34. G. Di Pillo and L. Grippo. Exact penalty functions in constrained optimization. SIAM J. Control Optim., 27:1333–1360, 1989.
  35. R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer-Verlag, Berlin, Heidelberg, 1998.
  36. R. T. Rockafellar and R. J.-B. Wets. Stochastic convex programming: Kuhn-Tucker conditions. J. Math. Econ., 2:349–370, 1975.
  37. R. T. Rockafellar and R. J.-B. Wets. On the interchange of subdifferentiation and conditional expectation for convex functions. Stochastics, 7:173–182, 1982.
  38. A. Rubinov and X. Yang. Lagrange-Type Functions in Constrained Non-Convex Optimization. Kluwer Academic Publishers, Boston, 2003.
  39. A. Shapiro and T. H. de Mello. A simulation-based approach to two-stage stochastic programming with recourse. Math. Program., 81:301–325, 1998.
  40. Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia, 2014.
  41. A. S. Strekalovsky. Global optimality conditions and exact penalization. Optim. Lett., 13:597–615, 2019.
  42. Global search for bilevel optimization with quadratic data. In S. Dempe and A. Zemkoho, editors, Bilevel Optimization, pages 313–334. Springer, Cham, 2020.
  43. A. Uderzo. On the variational behaviour of functions with positive steepest descent rate. Positivity, 19:725–745, 2015.
  44. A. Uderzo. A strong metric subregularity analysis of nonsmooth mappings via steepest displacement rate. J. Optim. Theory Appl., 171:573–599, 2016.
  45. S. Vogel. Necessary optimality conditions for two-stage stochastic programming problems. Optim., 16:607–616, 1985.
  46. H. Xu and J. J. Ye. Necessary optimality conditions for two-stage stochastic programs with equilibrium constraints. SIAM J. Optim., 20:1685–1715, 2010.
  47. H. Xu and D. Zhang. Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Math. Program., 119:371–401, 2009.
  48. A. J. Zaslavski. Optimization on Metric and Normed Spaces. Springer, New York, 2010.
  49. A two-stage stochastic programming model for the optimal design of distributed energy systems. Appl. Energy, 103:135–144, 2013.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: