Determining when an algebra is an evolution algebra
Abstract: Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper we obtain necessary and sufficient conditions for a given algebra $A$ to be an evolution algebra. We prove that the problem is equivalent to the so-called $SDC$ $problem$, that is, the $simultaneous$ $diagonalisation$ $via$ $congruence$ of a given set of matrices. More precisely we show that an $n$-dimensional algebra $A$ is an evolution algebra if, and only if, a certain set of $n$ symmetric $n\times n$ matrices ${M_{1}, \ldots, M_{n}}$ describing the product of $A$ are $SDC$. We apply this characterisation to show that while certain classical genetic algebras (representing Mendelian and auto-tetraploid inheritance) are not themselves evolution algebras, arbitrarily small perturbations of these are evolution algebras. This is intriguing as evolution algebras model asexual reproduction unlike the classical ones.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.